Turbine Development and Integration Issues

DOE/UN International Conference and Workshop on Hybrid Power Systems

Charlotte, NC April 17, 2002

Dan Smith
Energy Systems Laboratory
GE Research

Niskayuna NY 12301

(518) 387-6413 smithdp@crd.ge.com

Power Generation Technologies

SOFC Hybrid Power Plant

Drivers for SOFC Hybrid Systems

- High efficiency
 - Turbine hybrid cycles +65%
 - High efficiency potential at small sizes
- High environmental attractiveness
 - Ultra low emissions possible, low noise
 - Distributed power potential
- Cogeneration potential
 - Ultimate energy utilization
- Fuels flexibility
 - Natural gas, biomass, coal gas, oil and gasoline
- Size and siting flexibility
 - Full range of power generation sizes

Potential Future Power Generation Technology

Overview of Generic Cycle Layouts

Direct cycles

Indirect cycles

Key Issues: GT Pressure Ratio & inlet T

Key Issues: GT Pressure Ratio & High Temp Heat Exchanger

Implications of Power Split on System Performance

Primary requirements of The Gas Turbine

- Higher GT efficiency improves overall system.
- For direct cycles both GT pressure ratio and inlet temperature are limited by the specific FC Stack.
- For indirect cycles the GT inlet temperature is limited only by the heat exchanger material selection and cost.
- In all cases the power split, fuel utilization in the fuel cell, and stack design controls the gas turbine and system optimum

Implies Gas Turbine Design for a Specific Fuel Cell is Required

System Challenges

To achieve an optimized Hybrid Power Plant the Fuel Cell and Gas Turbine need to be designed together

System Challenges

- Turbine System
- Flow Handling System
- Auxiliary Systems

Turbine System

- Micro/Mini-turbine Based System
 - Low Pressure Ratio & Operating Temperatures
 - Currently no commercial systems available
- Fuel Cells & Gas Turbines are Dynamically Different Systems
 - Starting
 - Fuel cells have long time constants while gas turbines do not
 - Stopping Loss of load event
 - Both systems react differently, each with it's own control challenges
 - Load Sharing and Grid Participation
 - Optimization challenge to achieve best performance

Flow Handling System

- Physical System Challenges
 - Plumbing and Valving of Hot, Pressurized Gas
 - TCE challenges for large systems
 - Control Sensors in Flow
- Combustion/Oxidation of Gases
 - Low Btu Combustion
 - Stability of H2 combustion in Premixed Systems
 - Catalytic combustor challenges
 - Starting the Combustor (Ignitability)
 - Stored energy considerations

Auxiliary Systems

- A Significant Portion of any Power Plant
 - Fuel Compression
 - Availability of product (depending on size of plant)
 - High Temperature Heat Exchangers
 - Availability, Reliability, Maintainability
 - High Temperature Blowers, Valves, Piping
 - All contribute to the complexity and cost of the system
 - H2 Sensors
 - Turbines typically controlled by exhaust temperature
 - Safety systems (physical, electrical, chemical)

Auxiliary Systems are key to System Performance

Technology Status and Plans

Heat Exchangers

- Status: Limited by cost of materials to 1200° F (650C)
- Significant improvements required in both reliability and cost
- Develop multi function, unified heat exchanger concepts
 - Too may components currently
 - Integrate fuel pre-heater, water pre-heater, reucperator etc.

Gas Turbine

- Status: No off the shelf system available for each specific FC power plant configurations.
- Need to develop specific designs for the FC based power plant (technology exists)

Controls

- Status: Details of transients between the slow response, high thermal inertia fuel cell and heat exchanger vs. the fast response gas turbine is not understood
- Improve understanding of the control system dynamics and interactions including power conversion systems

Technology Status and Plans

Balance of Plant (BOP)

- Work to minimize BOP by clever integration of the plant components
- Most sub-systems readily available
 - High temperature blowers an exception
- Develop application specific components as required

Power Conversion

- Status: Off the shelf systems available for specific power ranges.
 - Efficiency of a fuel cell hybrid plant is significantly impacted by power conditioner performance.
- Need modular power conditioning system designs
 - Adaptable to range of hybrid plant concepts
 - Drive power conditioning requirements back through system design to set constraints on cell, stack, turbine and controls.

Conclusions

SOFC-GT Hybrid Systems Offer Significant Promise

- Unprecedented electrical efficiencies over a wide range of power output
- Environmentally friendly
- Fuel flexible

Considerable Development Efforts Required for Success

- Must be treated as integrated system design
- Turbine, heat exchangers, power conversion, and balance of plant all set system constraints.
- Markets, mission, operability requirements, and fuels have significant impact on design
- Commercial product success will be determined by life cycle cost of electricity

SOFC-GT Hybrid – A Disruptive Technology